KUAN-HO REFRACTORIES INDUSTRY CORPORATION

HEAD OFFICE : NO.932, CHIEN FENG ROAD, TOUFEN MIAOLI TAIWAN R.O.C

FAX : 886-37-541

E-mail: krics@kric.com.tw

TEL: 886-37-542873-7

FAX : 886-37-541574 http://www.kric.com.tw **POTCC** The TCC Group

K09AG03

THE QUALITY OF ORDINARY CASTABLE

Ordinary castable refractories are composed of different refractory aggregates and high alumina cement. It is furnished in dry form and shoud be mixed with water at job site for use. By means of casting, trowelling or gunning, castables can be casted into place to from a solid and joint-free monolithic refractory structures. Adequate construction and workmanship are important. Comparing with fire-bricks, castables have the following merits over bricks.

• Can be casted into place easily and quickly to save time and

labor.

- Can be casted into any shape or dimension.
- Low thermal conductivity and good insulation.
- To form a solid and joint-free structure.
- Good resistance to spalling.

The life of a castable depends to a great extent on workmanship and construction method. We have a written manual on "workmanship of a monolithic refractories" for customers.

Typical Properties

Brand		CA-185	CA-180	CA-170	CA-165	CA-160	CA-155	CA-150
		CASTABLE						
Properties								
Max. Service Temperature °C		1800	1800	1700	1650	1600	1550	1500
Quantity Required (Kg/m ³)		2910	2850	2380	2250	2200	2150	2150
Water Required For Mixing (%)		7-8	8-10	12-14	14-16	10-11	13-14	13-14
Chemical Composition	Al_2O_3	94.9	92.2	67.0	60.0	58.0	50.0	46.8
(%)	SiO ₂	0.9	1.5	21.3	31.5	31.0	40.2	45
	CaO	3.1	2.9	2.5	2.5	2.5	7.0	7.2
Modulus of Rupture	110°C	3.4	5.4	3.6	4.2	4.3	5.4	8.2
After Heating (Mpa)	1000°C	2.8	4.5	2.5	2.3	2.7	3.2	-
(Bending Strength)	1500°C	17.9	33.3	10.8	8.6	10.8	10.4	16.2 (1400°C)
Permanent Linear	1000°C		-	-				-
Change(%)	1500°C	0.62	-0.56	-0.25	0.08	0.41	-0.10	1.36
Thermal Expansion at1000°C(%)		0.7	0.7	0.6	0.5	0.5	0.5	0.4
Thermal Conductivity (W/m.k)	At 500°C	1.50	1.5	0.86	0.86	0.83	0.83	0.68
	At1000°C	1.68	1.68	1.28	1.28	0.98	0.98	0.84
Application		Various furnace						
Remark		Hot volume	Hot volume	High	Spalling			
		stability	stability	temperature	resistance			
		Abrasion	Abrasion		Corrosion			
		resistance	resistance		resistance			

Brand		CA-145H	CA-145	CA-135	CA-130A	CA-130	CA-120
		CASTABLE	CASTABLE	CASTABLE	CASTABLE	CASTABLE	CASTABLE
Properties							
Max. Service Temperature °C		1450	1450	1350	1300	1300	1200
Quantity Required (Kg/m ³)		2100	2100	2050	2350	1850	1850
Water Required For Mixing (%)		14-16	14-16	12-14	9-11	12-14	15
Chemical Composition	Al_2O_3	48	42	40	54	38	28
(%)	SiO ₂	39	44	45	33.4	47	57
	CaO	9.2	9.0	8.2	7.5	8.1	9.8
Modulus of Rupture	110°C	8.7	5.0	3.5	12.6	3.2	8.6
After Heating(Mpa)	1000°C	4.6	2.5	1.9	17.7	1.8	4.5
	1400°C	9.5	7.8	5.1 (1300°C)	18.4	5.0 (1200°C)	5.6(1200°C)
Permanent Linear Change(%)	1400°C	2.86	1.05	−0.14 (1300°C)	-0.05(1400°C)	-0.05(1200°C)	-0.19(1200°C)
Thermal Expansion at1000°C(%)		0.4	0.4	0.6	0.5	0.6	0.6
Thermal Conductivity	At 500°C	0.63	0.67	0.67	0.86	0.67	0.67
(W/m.k)	At1000°C	0.87	0.77	0.81	1.28	0.77	0.81
Application		Various furnace	Various furnace	Various furnace	Various furnace	Various furnace	Various furnace
Remark		High strength			Abrasion resistance		

The average values are typical standard values which cannot be considered as binding specifications. All previously published technical data are replaced by the values stated herein and thus become invalid.